
 continued >

ChangeThis

Not using Adobe Acrobat? Please go to http://changethis.com/content/reader| iss. 12.04 | i | U | X | + |

Save to disk [help]

Hide/Show menus

Y
2

SIX LAWS
 SOFTWARE

by Dror Eyal

of the NEW

The

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email
http://changethis.com/content/reader

ChangeThis

2/17| iss. 12.04 | i | U | X | + |

The first wave of software is over, it is doubtful that any one
company will capture the market like Microsoft or SAP did.
Not because the software they write isn’t better or has less
functionality, they’ve simply arrived too late. Most home
consumers have all the software they will ever need, and most
companies out there already have all the basic technologies they
need to successfully compete right now.

I can hear their objections all the way down here, and I agree, your software is better de-
signed, faster, has more features, is more user-friendly and can indeed make seven flavours
of coffee. We have something similar, it isnʼt well designed, it doesnʼt have half of the features
that yours has and no, it doesnʼt run on Service Orientated Architecture. We did however pay
a small fortune for the per-seat licences, we have learnt to use it quite comfortably over the
last five years and this is the system that our business runs on.

This view isnʼt limited to us — Northwestern University economist Robert Gordon, in a 2000
article published in the Journal of Economic Perspectives, argued that "the most important
uses of computers were developed more than a decade into the past, not currently."

Itʼs a fairly bleak view to be sure, but one that isnʼt unique to Mr Gordon. Many business
executives are turning away from purchasing new technologies and looking for new ways to
use their existing technologies effectively. Not because the new software entering the market

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

3/17| iss. 12.04 | i | U | X | + |

isnʼt better, but because the functionality that they need already exists in software that was
bought years ago. Budgets for software expenditure are dropping and the accountants are
starting to question why the software that was essential last year needs an upgrade this year.
What this means to the average software developer is that the window of opportunity for
selling into the corporate market and to some the degree the home market is getting smaller
than ever before.

So does this mean that this is the end for the software industry? Obviously not, we will con-
tinue to develop better products, occasionally new technology will get developed and or a
new idea will start a trend and software will get developed around it. Software that meets
a new need will always be welcome. Who knew that we needed file sharing software before
Napster turned the music industry on its ear? Or that social software and bloging tools were
essential if your company was to be seen to be on the cutting edge?

No, it isnʼt the end, but for every tool that revolutionizes the industry and strikes a path into
a new territory there are several hundred software companies out there trying to build a bet-
ter CRM or CMS — the software industry equivalent of the mousetrap. Obviously it would be
better if we all developed software that met a new need and created new markets, but just as
obviously we canʼt all develop revolutionary new software. Most of the software being devel-
oped right now in studios around the world is trying to find a niche in existing and saturated
markets. So how do you build software that stands out and can compete in this new environ-
ment? You build a tool based on new generation software laws.

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

4/17| iss. 12.04 | i | U | X | + |

SINGLE IDEA: The best way to succeed in the marketplace
is to create software that fulfills a specific need. This may
seem like an obvious point at first, but if you cannot explain to
the end user what the software does in a single sentence it is
probably too complex. Your first task is to ask yourself, “What
does my product do?”

Most books about developing software start with the system architecture, some sort of UML
diagram or a user requirements specification. In the new software, the place to start is to ask
yourself what this product does? If you cannot describe this in a sentence to yourself, youʼll
have a hard time convincing others about the usefulness of the software to their situations.
This software is used for writing documents, for easily updating a website without having to
know HTML, it allows you to share files with other people. It can do anything, as long as you
can describe it in a sentence.

By defining what the product does in a single sentence, youʼll not only develop a product
that has an explainable need, but your product will fulfill a defined need. If the idea behind
your product is too complex youʼre going to face an uphill battle trying to communicate its
purpose. It can be a specialised need, it can be a need that your customer base doesnʼt know
that it has, but if that need can not be condensed into a single sentence you will lose your
audience.

Most software vendors start off by developing a product which is stable and has a defined
purpose. Once they are in the market they realise that there are competitors in the market
with more features. They quickly make a list of the functionality the competitors have and

http://www.changethis.com/archives?by=email_count&topic=&query=
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

5/17| iss. 12.04 | i | U | X | + |

build it into their product, shifting away from the single idea. The product suddenly becomes
complex to use, weighed down with features it requires more processing power, a longer
install and more pre-requisites. The market stops using it. Itʼs too complex, it needs too high
a spec machine. The company tries to gain back the market share by adding more features.

The point Iʼm making is donʼt try to keep up with the Joneses by adding every new feature
and functionality into your product. Users want simplicity, they want to know that the prod-
uct will send and receive email. They donʼt really care that it reads RSS feeds and can auto-
matically search your favourites folder for updates. This simplicity in functionality is some-
thing that Google exploited with its simple interface. While Yahoo!, Excite and the rest of the
search engines were developing massive portals, adding functionality and features, Google
had two buttons — ʻGoogle Searchʼ and ʻIʼm Feeling Lucky .̓

One of the main reasons why people have been adding functionality into their software is not
because the customers want it but due to softwareʼs non-physical nature. You see, software
isn't a physical good like a shoe, it never wears out. In theory, once you have bought a piece
of software to send mail you shouldnʼt ever need another email client. There's no natural
repurchase cycle.

So if youʼre a software company how do you keep on making money off the same piece of
software? The classical way of squeezing extra money out is to upgrade it. This is critical
to the economics of most software. Unfortunately the customers donʼt always want it. How
many features in PowerPoint do you really use? By adding extra features you can push up the
price of the software, but you also leave a huge market gap for software that fulfills a specific
need. Microsoft can afford to this, because they are Microsoft, you canʼt, and even they have
had to compensate for this overshooting. When Office 97 was released unhappy custom-
ers forced Microsoft to issue a special program that enabled Office 97 files to be opened in
Office 95. The customers preferred the old software because it had fewer features. In the new
software the only upgrades that are made are those that are requested by the end users.

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

6/17| iss. 12.04 | i | U | X | + |

COLLABORATE: Forget enterprise systems that do
everything possible within your field. They’re too large, clumsy
and require too much development time. Instead, create small
discrete software that can collaborate seamlessly with the
technology that the end users are currently using.

To develop an enterprise system that provides everything is a losing proposition. Rather, cre-
ate small software that does not involve great investment in development and products that
leverage existing software currently being used by your target audience and do not require
armies of programmers. A small studio of three or four programmers should be able to turn
out the kind of software I am talking about in about three to six months. By writing small
software that doesnʼt take long to develop and collaborates with existing technologies, you
can recoup the costs of that development many times over.

Unsurprisingly, much of the technology that is currently in place in major corporations is
actually being used by their staff. The new software states that you need to capitalise on this
by developing complementary software. If you develop a word processor, you probably wonʼt
win very much market share from MS Word, but what if you build a plug-in that allows you
to easily add mathematical equations, or a plug-in that allows you to convert the document
to PDF format, or one that allows you to convert a word document into an e-learning course
with a single click of a button? Now you have a huge market of MS Word users who need that
extra specialised functionality and are willing to pay for it. Most of the large software compa-
nies have developed extensive and well documented APIs. Use them!

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

7/17| iss. 12.04 | i | U | X | + |

Even if you are not developing a plug-in for another system, you must have the ability to
seamlessly collaborate with the technology that is currently being used. Donʼt fool yourself:
operating systems have collapsed and disappeared without a trace because they couldnʼt
open an Excel spreadsheet. You have to take existing software into account or your software
will die a soft death on a shelf somewhere.

In order to survive you must learn the art of collaborating. Donʼt try to recreate functional-
ity that already exists in software tools that the user is currently using, rather leverage those
tools and collaborate with them. The end user is familiar with those tools and they will be
missed if you try to recreate them. If your system requires that you use a spreadsheet pro-
gram, develop ubiquitous hooks that seamlessly allow the user to jump from your software
into Excel and back. If your software requires that you have a word processing tool, develop
your system as a MS Word plug-in, or take it one step better and develop your system as an
MS Office plug-in. By extending the Office Suite your user can choose to either develop in
Word or in Excel.

DISAPPEAR: No matter what kind of software you are
creating, you have to simplify the interface. The greatest
software in the world is useless if it is too complex to use.
Decrease the interruption of the user experience by reducing
the user interface to the point where only the essence is
showing.

http://www.changethis.com/content/CopyandPaste
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

8/17| iss. 12.04 | i | U | X | + |

Buyers have become much more demanding about usability, and by usability they mean that
the user experience they are used to should not be interrupted. Add an extra button or two
to their user experience and they will forgive you, but try to add a whole new piece of soft-
ware which interrupts the way that they are used to working and you will lose them.

We need to simplify the interface as much as possible. You want the user to not have to move
away from her natural way of doing things and in order to do that your user interface has to
disappear, to be unobtrusive, to be low-profile. If your software converts from Excel to PDF,
then all it really needs is a single button to do its core function. If it must have management
modules of some sort where you manage the settings of these conversions, these should be
easily accessible through one or possibly two buttons.

Every Information Architect will tell you that the average person canʼt remember more than
x amount of buttons and y amount of abbreviations. This is all fine and well, but most small
software companies donʼt have the benefit of an Information Architect so Iʼd like to add
another important rule, letʼs call it the Gates effect. It states that if you are uncertain about
any element of the user interface, just think, ʻWhat Would Microsoft Do?ʼ

Microsoftʼs usability has improved quite a bit since they moved to XP, but more importantly
the majority of the people on this planet are working on Windows or Windows clones. Itʼs
a subtle effect, but subconsciously in the userʼs mind when they want to close the interface
they will look at the top right hand corner for an small x icon. By developing to a standard
which the user is used to, you are not only decreasing time to competency but also decreas-
ing interruptability.

As technologists, we hold all sorts of knowledge that is tacit. We mostly don't realize that we
possess it, and we don't realize that our end users don't. We donʼt realize that most people
donʼt know that you should not repeatedly click the enter button because commands are
repeatedly being sent and must be processed. Acknowledging the gap between technologists

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

9/17| iss. 12.04 | i | U | X | + |

and end-users is nothing new, and for years we have been arguing that software must be us-
able by “my mom.” That the software must provide an ʻout-of-the-boxʼ experience. The way
to do that in the new software is to make the interface disappear, to not interrupt the user
experience.

Yes, the user interface is important as it is the core of the user experience but it shouldnʼt
disrupt the user to the extent where they have to minimize or close their regular software
and switch to yours. Software like netviewer, a desktop sharing tool provides hooks that
allow the end user to change from her desktop to another without splitting the user experi-
ence, has completely disappeared. Zero interruptability.

SIMPLIFY: Do I have to go through a course to work with your
technology? If so, you are already out of the market. I don’t have
time and I already have something similar which I’m used to.

Most people who are going to buy your software are going to have had experience of soft-
ware. Even my grandfather from Haifa has had email for years now. To the average person,
commercial web sites like EBay and Amazon are really sales software with an intuitive in-
terface that the average web user can easily understand and use without going on a course.
They know that a piece of software does not have to be difficult to use and doesnʼt always
require training. My grandfather orders books on Amazon. You canʼt send my grandfather on
a course, and if he doesnʼt immediately grasp your software he wonʼt use it.

At the company I work for they were looking for a Powerpoint to Flash converter to use in the
development of online material. Everyone in the company is proficient in using Powerpoint,
while the companyʼs main method of content delivery via the web is flash. A tool that allowed

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

10/17| iss. 12.04 | i | U | X | + |

people to work in a medium that they were familiar with and could relate to, while at the
same time produce material that could be used online was ideal. After considering a number
of options which included products from some of the big software companies, they settled
on a product that had a single button. No need for extra training, just one ʻConvert to Flashʼ
button.

The tool was a success because it retained the familiar interface everyone was used to in
Powerpoint, it didnʼt require anyone to learn anything new, it had an easily conveyed func-
tion inscribed on its single button and most importantly it was easy to use. They could have
gotten software with extra functionality which let the user edit the individual slides, add
voiceovers or other rich media functionality, but the added interfaces would have required
some training and getting used to by the authors. This tool had a non-existent learning
curve and functionality that didnʼt require any training.

RELEASE: Start creating and releasing your software now.
Think prototypes, iterative releases and user base. Don’t spend
your time on writing business plans, designing a website and
choosing logos. The competition is moving a lot faster than you
may think.

First mover advantage is not as important as various authors make it out to be — Amazon
was the third online bookshop — but releasing a piece of software into market where there
are dozens of competitors is hard to recover from. While you were designing your website,
your competition was releasing beta versions of their software into the market, testing the

http://changethis.com/submit
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

11/17| iss. 12.04 | i | U | X | + |

waters and refining the prototype based on user requests, blog reviews and actual user
experiences.

It is very difficult to get a user to switch from ʻbadʼ software to ʻgoodʼ software once they
have invested time in mastering the software. In the new software you develop a working
prototype which performs the core functions in your system and release it. Release it in
alpha, release it in beta, it doesnʼt matter, just release it. Let the people who are actually go-
ing to be using it give you feedback. If youʼve only spent three months developing it, it is not
going to hurt as much to be told that a quarter of the functionality is not going to be used.

It has happened far too many times that software has been designed according to “theoreti-
cal” best practice or some product managerʼs notion is of what the users want or how they
might perform their work. This results in fully developed systems that might match the work-
flow in an industry but do not take into account the idiosyncrasies and shortcuts that people
in any industry develop over time. Itʼs the idiosyncrasies and shortcuts that will increase your
rate of adoption.

It repeatedly amazes me how people will reject a piece of software and it will fall out of
favour because it doesnʼt have a certain shortcut or the terminology is different to what they
are used to. Some people swear by AOL̓s Instant Messenger because it has an icon that al-
lows you to express a cheesy grin while Windows Messenger doesnʼt. Its minor but it can be
the difference between adoption and rejection.

We recently had a company who were interested in our Content Management System to up-
date their website. They had been using a bloging tool to create a daily updated front page
and were unhappy that the system we were offering did not have a permalink system, we
tried pointing out that due to the nature of our system the URL of the page was equivalent
to the permalink. They were not convinced, so we added a small hyperlink at the bottom of

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

12/17| iss. 12.04 | i | U | X | + |

every page which linked to the very same page. The link was called permalink. They have
since switched their entire operation to our system.

Developing software by evolution is not something new, the software industry has always
had iterative releases based on market demands. The new software just releases it a little
earlier, lets the users have more say in the final design. Systems like the Wikipedia work on
the same principle.

The Wikipedia is an online encyclopaedia that has no editors, and anyone can contribute to it.
Anyone. The old way of thinking would suggest that it would end up being a confusing mess
of misspelled words, incorrect entries and spam. As it stands the Wikipedia is one of the
most informative knowledge bases online. By releasing early and letting your user base make
some of the decisions you are harnessing the same power to develop a better software. One
which is more suited to the needs of your end user.

COMPLY: Find the relevant international standard in your
marketplace and comply. This will enforce good architecture
and keep your product on track when your customers will want
it to integrate with their legacy software. You know they will
want you to integrate.

Most industries these days have standards that facilitate communication between different
systems by defining language standards and their application. These standards add a uniform
interface to heterogeneous systems, allowing them to connect and share data and function-
ality without requiring modifications to their internal workings. In essence, these standards

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

13/17| iss. 12.04 | i | U | X | + |

define an agreed upon language so that the system doesnʼt have to worry about which soft-
ware the request comes from, only that in response to a kind of request it should return a
certain kind of response.

This veil which is placed between the software and other systems it collaborates with erases
the incompatibilities among various software companies and allows them to interoperate
more or less seamlessly. You donʼt have to worry what kind of system is on the other side
of that request, it could be someoneʼs open source Property Management System, a Point of
Sale System developed in India or SAP HR. As long as they all comply with the same standard
they are all equal.

For the online learning industry this standard is known as SCORM and what it facilitates
amongst many other things is the exchange of information between content vendors and
content delivery mechanisms. An educational institution can buy any SCORM compliant con-
tent, safe in the knowledge that their content delivery system is SCORM compliant and will be
able to deliver the content.

HTML is a standard for the web. All software vendors who develop software that either views,
displays or edits HTML comply with the standard, which means that content developed on
Dreamweaver will not only be viewable on Internet Explorer but can also be reopened and re-
edited by Frontpage. Macromedia, who developed Dreamweaver, doesnʼt need to have ever
tested on Microsoftʼs product, they both comply.

This interoperability means that whatever your software does it will interoperate with any
other software that complies with the same standard. If you donʼt comply, your users will be
locked into a proprietary software system which requires you to develop proprietary tools to
do everything. Going back to our HTML example, your browser developed by Microsoft will
only display content developed by Microsoft, thus limiting not only the market but also the

http://www.changethis.com/subscribe
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

14/17| iss. 12.04 | i | U | X | + |

usefulness of your product. Would you use a browser that could only display pages created
by same software vendor? Why does your software require you to?

The second, often overlooked benefit to complying with international standards is that if you
comply then most of the workflow of current systems in the industry, is documented for you.
There is less chance that you will have that moment when your stomach rapidly condenses,
as you realise that you developed a function while forgetting that crucial element which
everyone in that industry knows is essential.

We had that kind of moment recently while developing an application for the travel industry
which uses the OTA standard. Somehow the ability to allow a person to book multiple rooms
was left out of the system, not a big deal you might think, but the entire core of the system
had to be rebuilt at a cost of months. A look through the OTA standard would have shown a
list of details that should be sent through when making a booking. Number five on the list?
Number of rooms.

http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

15/17| iss. 12.04 | i | U | X | + |

ABOUT THE AUTHOR

Chronic multitasker and software devotee Dror Eyal is dedicated to the creation of useful software. He
has been developing software for more years than he can remember, both as a software analyst and
as a programmer, and has had developed several award winning software packages. Some of those
packages have contributed to the mass of software that shouldnʼt have been built, while others have
helped to push the boundaries of the software paradigm.

Over the last couple of years, Dror has developed his theory of what it takes to compete in todayʼs
software marketplace based on work in commercial environments as well as the field of software art.
It has been referred to by various reviewers as ʻguerrilla software techniques ,̓ ʻhow to turn software
into a productʼ and ʻthe new software .̓ He prefers the new software.

DOWNLOAD THIS

This manifesto is available from http://changethis.com/12.SixLawsSoftware

SEND THIS

Click here to pass along a copy of this manifesto to others.
http://changethis.com/12.SixLawsSoftware/email

SUBSCRIBE

Learn about our latest manifestos as soon as they are available. Sign up for our free newsletter and
be notified by email. http://changethis.com/subscribe

info

http://changethis.com/12.SixLawsSoftware
http://changethis.com/12.SixLawsSoftware/email
http://changethis.com/subscribe
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

16/17| iss. 12.04 | i | U | X | + |

info
WHAT YOU CAN DO

You are given the unlimited right to print this manifesto and to distribute it electronically (via email,
your website, or any other means). You can print out pages and put them in your favorite coffee
shopʼs windows or your doctorʼs waiting room. You can transcribe the authorʼs words onto the side-
walk, or you can hand out copies to everyone you meet. You may not alter this manifesto in any way,
though, and you may not charge for it.

NAVIGATION & USER TIPS

Move around this manifesto by using your keyboard arrow keys or click on the right arrow (f) for
the next page and the left arrow (h). To send this by email, just click on .

HAVING PROBLEMS SAVING TO DISK?

First, make sure you have the latest version of Acrobat Reader 6 which you can download from
http://www.adobe.com/products/acrobat/readstep2.html. If problems persist, it may be due to your
Acrobat Reader settings. To correct the problem (for Windows), a reader, J. Hansen, suggests going
to your Acrobat Reader Preferences > Options > Web browser Options. Check the “Display PDF in
Browser” option. Then click on Save to Disk .

KEYBOARD SHORTCUTS PC MAC

Zoom in (Larger view) [CTL] [+] [#] [+]
Zoom out [CTL] [—] [#] [—]
Full screen/Normal screen view [CTL] [L] [#] [L]

http://changethis.com/12.SixLawsSoftware/email
http://www.adobe.com/products/acrobat/readstep2.html
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

ChangeThis

17/17| iss. 12.04 | i | U | X | + |

info

cc

 SOME RIGHTS RESERVED

creative
commons

BORN ON DATE

This document was created on 24 January 2005 and is based on the best information available at that
time. To check for updates, please click here to visit http://changethis.com/12.SixLawsSoftware

COPYRIGHT INFO

The copyright in this work belongs to the author, who is solely responsible for the content. Please
direct content feedback or permissions questions to the author: fox@polka.co.za

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

ABOUT CHANGETHIS

ChangeThis is a vehicle, not a publisher. We make it easy for big ideas to spread. While the authors
we work with are responsible for their own work, they donʼt necessarily agree with everything
available in ChangeThis format. But you knew that already.

mailto:fox@polka.co.za
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://changethis.com/12.SixLawsSoftware
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://changethis.com
http://changethis.com/12.SixLawsSoftware/email

	next 8:
	Button 22:
	hide/show menus 22:
	help 4:
	next B 3:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:

	previous 3:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:

	buzz 2:
	buzz 11:
	Button 23:
	Button 24:
	previous view 6:
	more 6:
	send 19:
	save to disk 2:
	previous view 8:
	more 8:
	previous 4:
	Page 17: Off

	previous 15:
	CC License:
	Button1:
	CT home 4:
	rollover 4:
	cover 18:
	Button 20:
	Button 21:
	print A 2:
	zoom A 2:

